Feature Selection in Naïve Bayes for Predicting ICU Needs of COVID-19 Patients
نویسندگان
چکیده
COVID-19 is a global pandemic that requires coordinated response in all healthcare and national systems. Identifying patients at high risk of contracting the virus crucial to increasing awareness before become further infected by virus, which can cause severe respiratory illnesses requiring specialized care intensive units (ICUs). This study aims predict need for ICUs with virus. The predicted ICU requirements serve as reference hospitals meet needs patients. prediction performed using Naïve Bayes algorithm, particle swarm optimization (PSO) used obtain best accuracy values from Bayes. In initial testing, without feature selection resulted an rate 74.75%. Testing Bayes+PSO number PSO generations shows increases, also increases. 3000 population size 20 increase 80.95%. 40 1000 each 80.70%.
منابع مشابه
Effect of Fluvoxamine on Cytokine Level of COVID-19 Patients Hospitalized in ICU
Background: In reviewing the laboratory studies on humans and animals, we observe that use of certain drugs with specified applications inhibit the immune reactions in the body. Selective Serotonin Reuptake Inhibitors (SSRIs) are among these drugs. The goal of the current research is evaluating the effectiveness of one kind of SSRIs namely fluvoxamine on the cytokine level of COVID-19 patients....
متن کاملA Novel Feature Selection Technique for Text Classification Using Naïve Bayes
With the proliferation of unstructured data, text classification or text categorization has found many applications in topic classification, sentiment analysis, authorship identification, spam detection, and so on. There are many classification algorithms available. Naïve Bayes remains one of the oldest and most popular classifiers. On one hand, implementation of naïve Bayes is simple and, on t...
متن کاملFeature Representation for Predicting ICU Mortality
Effective predictors of Intensive Care Unit (ICU) Mortality have the potential to identify high-risk patients earlier, improve ICU resource allocation, and create more accurate population-level risk models. Machine learning practitioners typically make choices about how to represent features in a particular model, but these choices are seldom evaluated quantitatively. This study compares the pe...
متن کاملMinimum Bayes error feature selection
We consider the problem of designing a linear transformation 2 IR , of rank p n, which projects the features of a classi er x 2 IR onto y = x 2 IR such as to achieve minimum Bayes error (or probability of misclassi cation). Two avenues will be explored: the rst is to maximize the -average divergence between the class densities and the second is to minimize the union Bhattacharyya bound in the r...
متن کاملthe test for adverse selection in life insurance market: the case of mellat insurance company
انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Indonesian Journal of Computer Science
سال: 2023
ISSN: ['2302-4364', '2549-7286']
DOI: https://doi.org/10.33022/ijcs.v12i3.3211